Advanced Alloys for High Temperature Recuperators

Philip J. Maziasz, Bruce A. Pint, Robert W. Swindeman, Karren L. More and Edgar Lara-Curzio

Oak Ridge National Laboratory

DER Peer Review March 13, 2002

Materials Selection is Determined by the Recuperator Hot-Gas Inlet Temperature

Alloy Selection for Advanced Microturbine Recuperators is Based on Balancing Relative Cost vs. Performance

Microturbine Recuperators Are Currently Made From 347 Stainless Steel

Ingersoll-Rand

Primary Surface Recuperator (PSR)

Brazed Plate and Fin Recuperator (PFR)

Evaluation Of Recuperators With Microturbine Service Will Provide Insight Into Alloy Performance

Ingersoll-Rand plate-and-fin recuperator with over 2,000 h of engine service (no failure)

Cross-section SEM image

Oxidation found on 347SS foil surfaces is typical of recuperator exposure to microturbine exhaust containing water vapor

Corrosion Problem in Recuperator Applications for Stainless Steel Foils With <20wt.% Cr

- Short time rapid attack with 10% H₂O compared to lab air
- Eliminates the least expensive alloys from consideration
- Thicker Fe-rich oxide forms instead of more protective Cr₂O₃

More Expensive Alloys Avoid This Problem Ni- and Fe-Base Alloys With >20wt.% Cr

- Alloy 625 (Ni-21Cr) and Haynes 214 (NiCrAl) show good resistance
- Even 20/25/Nb stainless steel is resistant at this temperature (note small mass changes after 5,000 h at 800°C)

What is the least expensive alloy with good corrosion protection?

Model Fe-Cr-Ni- Alloy Testing

Study oxidation behavior to assess:

```
(current work) → effect of Cr and Ni contents
(current work) → effect of alloy grain size
(future work) → effect of minor alloy additions (Mn, Si, Nb, etc.)
```

(%::			Ni C	ontent (w			
(wt.		10	15	20	25	30	
Cr Content	16 18 20	X X X	X X	X X X	X X	X X X	X=alloy composition

Blue line → boundary for as-cast, coarse-grained alloys at 700°C Red line → boundary for fine-grained (rolled, foil-like material) at 700°C

Grain size effect \rightarrow attributed to diffusion of Cr in alloys Beneficial Ni effect \rightarrow to improve 347SS, increase Cr and/or Ni

Boundaries may be further altered by minor element alloying (Mn, Si. ??)

New Recuperator Testing and Evaluation Facility at ORNL

ORNL's Microturbine Recuperator Test Facility

modified 60 kW Capstone microturbine

annular recuperator access ports for sample exposure

maximum recuperator inlet temperature: 843°C

sample holder

with candidate
alloys

- screening and evaluation of candidate alloys for the next generation of microturbines.
- Effects of stress and temperature on durability
- Test specimens are positioned at the entrance of the recuperator

Technical Contact: Edgar Lara-Curzio (865) 574-1749 laracurzioe@ornl.gov

chemical & microstructural characterization

ORNL's Microturbine Recuperator Test Facility

- Thin foils are stamped to reproduce manufacturing (cold work) conditions.
- Specimens are rolled and welded to sample holder to obtained closed cylindrical geometry.
- Test specimens are stressed mechanically by internal pressurization.

sample holder

Advanced Recuperator Materials Program Emphasis

- Analyze fresh and service-exposed components to consistently benchmark the materials performance needs for various advanced microturbine recuperator technologies
- Work with OEMs and materials producers to make recuperators from commercially available advanced stainless alloys
- Develop new, modified 347 stainless steels and alloys
- Begin commercial scale-up of most promising cost-effective new alternatives to 347 stainless steel
- Corrosion Testing
- Materials Testing and Evaluation

Feedback from Microturbine OEM's Spurred Development of Modified 347 Steels with Engineered Microstructures

Materials R&D Capabilities and Expertise

Unique ORNL Laboratory-Scale Processing Equipment Used For Accurate Simulation of Commercial CAL Foil Processing

Radiant-Heating Furnace

- high-intensity Tungsten-Halogen lamps
 - Ar-4% H₂ atmosphere

Microstructures are "Engineered" to Control Grain Size and the Fine Precipitation Behavior Within the Grains

Commercial 347 steel ORNL processing

Special Metals alloy 740 (thermie-alloy)
ORNL processing

HR 120 and Modified 803 are High Performance Upgrades at Moderate Cost for Creep Resistant Foils

TEM Analysis Of Creep-Tested 347 Stainless Steel Foils Helps Guide Development of "Engineered Microstructures"

standard 347 foil, creeptested for ~ 500 h at 704°C

D0000254a UT-BATTELLE

Alloy Development for "Engineered Microstructures" Can Dramatically Improve the Creep Resistance of Foils

Advanced Recuperator Materials Program Additional and Future Work

- Test advanced alloys in Recuperator Test Facility
- Include commercial materials (347 steel, advanced alloys) in creep screening to complete study
- Screen weldability of modified 347 steels and advanced alloys relative to standard 347 steel
- Screen room-temperature tensile of as-processed (manufacturability) and aged (ductility loss) of modified 347 steels and advanced alloys
- Establish the effects or resistance to water vapor corrosion for modified 347 steels and advanced alloys

